Based on Nordtest

NT Techn Report 535
System Validation Help
Page 1 of 37

Figure 1 - Software life cycle model

Abstract

Validation is the confirmation by examination and the provision of objective evidence that the par​ticular requirements for a specific intended use are fulfilled [5]. Thus, validation of software is not just testing. Requirements must be specified and evidence covering the intended use must be provided. This method recommends a working strategy based on a common software life cycle model and pre​sents the validation problems in a clear and systematic way. This method will help to establish docu​mented evidence, which provides a high degree of assur​ance that the validated software product will consistently produce results meeting the predetermined specifications and quality attributes.

Table of contents
5A.
Objectives and scope of application

5A.1
Objectives and scope of application

5A.2
Role / Responsibility

6A.3
System elements

6A.4
Type of software

7B.
System life cycle overview

7B.1
Requirements & system acceptance test specification

7B.2
Design and implementation process

7B.3
Inspection and testing

8B.4
Precautions

8B.5
Installation and system acceptance test

8B.6
Performance, servicing, maintenance, and phase out

9C.
System life cycle activities

9C.1
Requirements and system acceptance test specification

9C.1.1
Requirements specification

13C.1.2
System acceptance test specification

14C.2
Design and implementation process

14C.2.1
Design and development planning

15C.2.2
Design input

16C.2.3
Design output

17C.2.4
Design verification

17C.2.5
Design changes

18C.3
Inspection and testing

18C.3.1
Inspection plan and performance

19C.3.2
Test plan and performance

20C.4
Precautions

20C.4.1
Registered anomalies

21C.4.2
Precautionary steps taken

21C.5
Installation and system acceptance test

21C.5.1
Installation summary

22C.5.2
Installation procedure

22C.5.3
System acceptance test

23C.6
Performance, servicing, maintenance, and phase out

23C.6.1
Performance and maintenance

24C.6.2
New versions

24C.6.3
Phase out

25D.
Conclusion

25D.1
Final approval for use

25D.2
Conclusion (Document protection)

25E.
References and annexes

25F.
Description

26F.1
About macros in Word

26G.
Method of software validation

27G.1
Definition of terms

28G.2
Scope

28G.2.1
Purchased software products

28G.2.2
Self-developed software products

28G.3
Development, verification, and validation

29H.
Software life cycle model

29H.1
Requirements and system acceptance test specification

29H.1.1
Requirements specification

30H.1.2
System acceptance test specification

31H.2
Design and implementation process

31H.2.1
Design and development planning

31H.2.2
Design input

31H.2.3
Design output

31H.2.4
Implementation (coding and compilation)

32H.2.5
Version identification

32H.2.6
Tips on good programming practice

33H.2.7
Tips on Windows(programming

33H.2.8
Dynamic testing

33H.2.9
Utilities for validation and testing

33H.2.10
Tips on inactive code

33H.2.11
Documentation

34H.2.12
Design verification

34H.2.13
Design changes

34H.3
Inspection and testing

35H.4
Precautions

35H.5
Installation and system acceptance test

35H.6
Performance, servicing, maintenance, and phase out

36I.
Validation report

37J.
Method references

Advanced Bookmark Control (ABC) toolbar
The Advanced Bookmark Control (ABC) toolbar is automatically invoked when a System Validation Report Xp is opened. This document, referred to as System Validation Help, is derived from the Sys​tem Validation Report template and contains a true copy of the bookmarked valida​tion tables in the report. The Help document will not invoke the toolbar.
To use this document as On-line Help, set the cursor somewhere in a System Validation Report text cell and press the “Bookmark Help” button in the ABC toolbar. The selection point will then move to the corresponding “help” cell. “Help” cells contain additional help information about how to fill in the validation report. Pressing the arrow button “Return from Help” will return the selection point back to the report’s exit point.
	
	Tool Tips
	Function

	[image: image1.png]

	Bookmark Help
	Go to the corresponding cell bookmark in the Help file

	[image: image2.png]

	Return from Help
	Return to the cell from where the Help was called

	[image: image3.png]

	Check Bookmark
	Insert a checked symbol (in the selected line

	[image: image4.png]

	Uncheck Bookmark
	Insert an unchecked symbol (in the selected line

	[image: image5.png]

	About Advanced Bookmark Control
	Show information about the macro system

To use the check/uncheck function in a System Validation Report, set the curser in an option line and press toolbar buttons to insert either an unchecked square symbol (or a checked square symbol (at the beginning of the option line.

Note that all hyperlinks in this document are in blue color.
User-supplier relationship (the V-model)
The testing of computer systems and software can be performed at several levels as shown in figure 2 below (commonly known as the V-model). This shows the relationship between the specifications and the testing. For example, the Functional Specifications are connected to the System Acceptance Test​ing implying that the Functional Specifications will be met after a successful completion of the subse​quent System Acceptance Testing.
The diagram shows that each type of specification has a testing context, which is used to verify that the specifications are met. The turnaround for the entire process is in this document referred to as vali​dation.

[image: image6]
Figure 2 - The V-model and the phases of the Life cycle model
The diagram also shows the common relationship between the user and the supplier when making specifications and testing. The user has the final responsibility for the validation, but can take great advantage of the tasks performed by the supplier along the way.
The V-model is a commonly used model for validation overview, and it may be used both for complex computer systems and simple software products. The life cycle model used in this document is out​lined in the diagram as well.

A. Objectives and scope of application
This section describes the computer system in general terms. It includes objectives and scope of appli​cation and, if relevant, overall requirements to be met (such as standards and regulations).

All persons who are involved in the validation process and authorized to sign parts of this report should be listed in the Role / Responsibility table. The report could hereafter be signed electronically with date and initials of those persons at suitable stages of the validation process.

The type of the system elements is out​lined in order to determine the extent of validation and testing.

	A.1 Objectives and scope of application

	General description
	A brief description of the computer system and especially the software com​ponents which are subject to validation and documentation in this report.

	Scope of application
	A brief description of what the software is used for.

	Product information
	A brief description of the software product in general terms. This is not part of the requirements specification although some of this information may be copied and pasted from that section.

	Overall requirements
	A brief description of the main requirements for the software. The basic pur​pose of this table is to give the first time reader an impres​sion of the software in question.

(Return to Table of Contents
	A.2 Role / Responsibility
	Title and Name
	Initials

	System owner
	The system owner is a legal representative of the owner of the company or the laboratory. The name is always relevant if the person’s signature is required somewhere in the report, but may be included just for completing the report.
	

	System administrator
	The system administrator is the person responsible for the computer system. The name may be relevant even if the person is not responsible for the validation of the software in question.
	

	Application administrator
	The application administrator is the person responsible for the application in which the software is being used, or just for the software itself. Often the same person may have different roles and responsibilities.
	

	System user
	The system user is the person responsible for using that part of the system encompassing the software sub​jected to validation.
	

	Quality responsible
	The quality responsible refers to the QA leader (re​gardless of the title) of the laboratory.
	

	Requirements team...
	All persons that have been involved in the description of the requirements specification. It may include exter​nal persons and consultants as well.
	

	Development team...
	All persons that have been involved in the design and development of the software or the relevant part of the computer system. It may also include external persons and consultants.
	

	Peer review team...
	All persons that have been involved in peer review of the validation tasks. It may also include external per​sons and consultants.
	

	Testing team...
	All persons that have been involved in testing of the software or the relevant part of the computer system. It may also include external persons and consultants.
	

(Return to Table of Contents
	A.3 System elements

	Hardware (equipment, server, etc.):

(Off-the-shelf , well known manufacturer
(Off-the-shelf , less known manufacturer
(Specially produced hardware
Comments:
	Environment (building, room, laboratory, etc.):

(Practically no effect on the system's function
(Minor effect on the system's function
(Major effect on the system's function
Comments:

	(The user will be able to operate the system correctly after some training
(The user must be an expert and/or receive special training to operate the system correctly
Comments:

(Return to Table of Contents
	A.4 Type of software

	Purchased Software:

(Configurable software package
(Commercial off-the-shelf software
(Tool to assist in the software development
(Subcontracted software development
(Source code available and known
(Only partly validated 1)
Comments:

1) If purchased software is only partly validated, the laboratory must complete the validation itself. If this option is checked, a brief explanation for this case may be required.
	Self-developed software:

(Compiled executable program (e.g. C/C++)
(Spreadsheet (macro code, Add-In, etc.)
(Simple spreadsheet (no macro code)
(Tool to assist in development or testing
(Includes purchased software components
(Subcontracted software validation
Comments:

(Return to Table of Contents
B. System life cycle overview
This section outlines the activities related to the phases in the life cycle model used in the validation process. The numbers refer to the corresponding subsections in section C. Each activity contains a field for the preliminary task to be performed, a field for the validation method, and fields to specify the date and signature when the work is done.

	Activity
	B.1 Requirements & system acceptance test specification
	Date / Initials

	Task
	C.1.1
Requirements specification
	

	Method
	C.1.1
Peer review
	

	Check
	C.1.1
Requirements specification approved
	

	Task
	C.1.2
System acceptance test specification
	

	Method
	C.1.2
Peer review
	

	Check
	C.1.2
System acceptance test specification approved
	

(Return to Table of Contents
	Activity
	B.2 Design and implementation process
	Date / Initials

	Task
	C.2.1
Design and development planning
	

	Method
	C.2.1
Peer review
	

	Task
	C.2.2
Design input
	

	Method
	C.2.2
Peer review
	

	Task
	C.2.3
Design output
	

	Method
	C.2.3
Peer review
	

	Task
	C.2.4
Design verification
	

	Method
	C.2.4
Peer review
	

	Task
	C.2.5
Design changes
1. Description:

2. Description:

3. ...
	

	Method
	C.2.5
Peer review

1. Action:

2. Action:

3. ...
	

(Return to Table of Contents
	Activity
	B.3 Inspection and testing
	Date / Initials

	Task
	C.3.1
Inspection plan
	

	Method
	C.3.1
Inspection
	

	Check
	C.3.1
Inspection approved
	

	Task
	C.3.2
Test plan
	

	Method
	C.3.2
Test performance
	

	Check
	C.3.2
Test approved
	

(Return to Table of Contents
	Activity
	B.4 Precautions
	Date / Initials

	Task
	C.4.1
Registered anomalies
	

	Method
	C.4.1
Peer review
	

	Task
	C.4.2
Precautionary steps taken
	

	Method
	C.4.2
Verification of measures
	

(Return to Table of Contents
	Activity
	B.5 Installation and system acceptance test
	Date / Initials

	Task
	C.5.1
Installation summary
	

	Method
	C.5.1
Peer review
	

	Task
	C.5.2
Installation procedure
	

	Method
	C.5.2
Verification and test of installation
	

	Task
	C.5.3
System acceptance test preparation
	

	Method
	C.5.3
System acceptance test
	

	Check
	C.5.3
System acceptance test approved
	

(Return to Table of Contents
	Activity
	B.6 Performance, servicing, maintenance, and phase out
	Date / Initials

	Task
	C.6.1
Performance and maintenance
	

	Method
	C.6.1
Peer review
	

	Task
	C.6.2
New versions
1. Version:

2. Version:

3. ...
	

	Method
	C.6.2
Peer review

1. Action:

2. Action:

3. ...
	

	Task
	C.6.3
Phase out
	

	Method
	C.6.3
Peer review
	

(Return to Table of Contents
C. System life cycle activities
This section contains tables for documentation of the system validation activities. Each subsection is numbered in accordance with the overview scheme above. Information about the tasks to be per​formed, methods to be used, cri​teria for acceptance, input and output required for each task, required documentation, the persons that are responsible for the validation, and any other information relevant for the validation process shall be entered in the tables. Topics excluded from validation are ex​plicitly marked as such.

C.1 Requirements and system acceptance test specification

The requirements describe and specify the computer system completely and form the basis of the de​velop​ment and validation process. A set of requirements can always be specified. In case of retrospec​tive validation (where the development phase is irrelevant) it can at least be specified what the system is purported to do based on actual and historical facts. The requirements should encompass everything concerning the use of the system.

	Topics
	C.1.1 Requirements specification

	Objectives

Description of the computer system to the extent needed for design, implementation, testing, and validation.
	A brief description of the computer system including its overall use and enough details for the reader to get an impression of the objectives for this report.
E.g. if the design phase is relevant, this field should contain informa​tion about what is to be designed and implemented. It should, however, always be described what is to be tested and validated. This will make it easier for the reader to know what to look for.
For simple software, the requirements specification may fit in this table but, for complex computer systems, the specification should be speci​fied in external documents which are just referred to in here.

	Version of requirements

Version of, and changes ap​plied to, the requirements specification.
	Each time information is added to this requirements specification, a new version number and a description of what has been added should be given (with data and sign) in here.
The format of the version num​ber may be determined by the actual user or by the company regula​tions.

	Input

All inputs, which the com​puter system will receive. Includes ranges, limits, de​faults, re​sponse to illegal in​puts, etc.
	All inputs, which the computer system will receive. Inputs should be specified to the extent needed for design, implementation, testing, and valida​tion. Details will include ranges, limits, defaults and how to re​spond to illegal and invalid inputs.
For simple software, the input specification may fit in here, but for complex computer systems the input should be specified in an external document which is referred to here. However, in the latter case a de​scriptive overview may help the reader.
See also the field Errors and alarms at the end of this table.

	Output
All outputs, which the com​puter system will produce. Includes data formats, screen presenta​tions, data storage media, print​outs, auto​mated generation of docu​ments, etc.
	All outputs, which the computer system will produce. Outputs should be specified to the extent needed for design, implementation, testing, and validation. Details will include data formats, screen presentations, data storage media, printouts, automated generation of documents, etc.
For simple software, the output specification may fit here but, for com​plex computer systems, the output should be specified in an exter​nal document which is referred to here. However, in the latter case a de​scriptive overview may help the reader.
See also the field Errors and alarms at the end of this table.

	Functionality

All functions, which the computer system will pro​vide. Includes performance require​ments, such as data through​put, reliability, tim​ing, user interface features, etc.
	All functionality, which the computer system will provide. Functional​ity should be specified to the extent needed for design, implementation, testing, and validation. Details include performance requirements, such as data throughput, reliability, timing, user interface features, etc.

For simple software, the functional specification may fit here but, for com​plex computer systems, the functionality should be specified in an external document which is referred to here. However, in the latter case a descriptive overview may help the reader.
NOTE 1. Input, Output and Functionality are by far the most important requirements specification issues and they must be specified to the ex​tent needed to do proper testing and validation. Furthermore, it may be ex​tremely costly to add missing specifications at a later stage.
NOTE 2. This field deals primarily with the functionality associated with the common use of the computer system but does not supersede the requirements specification in the remaining fields.

NOTE3. See also the field Errors and alarms at the end of this table.

	Traceability

Measures taken to ensure that critical user events are recorded and traceable (when, where, whom, why).
	Traceability refers to automated measures that have been taken to en​sure that critical events are recorded and can be traced. Such facilities are sometimes also referred to as “electronic logbooks”. In many com​puter systems, such measures are built-in but for simpler software so​lutions this requirement has to be especially noted. However, a de​scription of how to handle critical events is mandatory in the valida​tion:
· What is considered a “critical event”

· When and Where did the critical event occur

· Who did it or Who has the responsibility

· Why was it initiated or Why did it happen

NOTE. This field may be combined with the change control stated in section C.2.5 Design changes.

	Hardware control

All device interfaces and equipments to be supported.
	All hardware devices and interfaces that are supported by software subjected to testing and validation. Commonly the hardware supplier will provide documented test reports but the software interacting with the hardware also has to be validated, especially if the software is self-developed.

	Limitations
All acceptable and stated limitations in the computer system.
	Limitations accepted and stated for the computer system. Limitations may be below original requirements but accepted due to economic or cost/benefit considerations.
E.g. limitations could be a limited range of input, limit of length of text strings, number of parameters in some con​texts, reduced functionality, etc.

	Safety
All precautions taken to pre​vent overflow and malfunc​tion due to incorrect input or use.
	All precautions taken to prevent overflow and malfunction due to in​correct input or use. This requirements specification may be related to the Input specification but is moreover intended to specify general precautionary steps against overflow, etc.

	Default settings

All settings applied after power-up such as default input values, de​fault instru​ment or program control settings, and options selected by default. Includes infor​mation on how to manage and maintain the default set​tings.
	Any input quantity will have a default value and that value has to be described somewhere. Even if unspecified input quantities are marked with text like “not specified” or similar, a default value has to be de​fined and documented.
Default settings are mandatory to almost any computer system and the user should be careful defining the default settings and their meaning for the use of the system.

	Version control

How to identify different ver​sions of the computer system and to distinguish output from the indi​vid​ual versions.
	Any software computer system must have a version control notification system, which can be used to distinguish one version from another. This distinction shall be visible on any output that, in one way or an​other, depends on different versions of the computer system.
Version number could e.g. be of the form “Version 1.2.3” depending on the degree of changes to be informed. A required brief description of the differences between versions would be helpful in deciding the validation effort.

	Dedicated platform

The hardware and software operating environment in which to use the computer system. E.g. laboratory or office computer, the actual operating system, network, third-party ex​ecuta​bles such as Microsoft(Ex​cel and Word, the actual version of the platform, etc.
	A description of the platform or environment in which the software or computer system is required to operate, e.g. Operating Systems like UNIX, Windows, Linux etc. or third-party executables such as MS Ex​cel, Word or Access, and the required version of these platforms. Also the actual network should be specified.
As part of those requirements, special agreements with the supplier about supporting future versions of the Operating System should be taken into consideration.

	Installation

Installation requirements, e.g. installation kit, support, media, uninstall options, etc.
	Requirements for installation of the computer system or parts hereof, including information about installation tools, supplier support, instal​lation media, and which options must be provided to uninstall the software.
NOTE 1. Simple software may still be supplied on 3½ inch diskettes, but on modern computers such devices may not be available.

NOTE 2. These requirements should be specified in context with the C.5 Installation and system acceptance test section.

	How to upgrade

How to upgrade to new ver​sions of e.g. service packs, Microsoft(Ex​cel and Word, etc...
	All problems concerning upgrade of the computer system or part hereof should be listed in here. The requirements should specify what type of upgrade to expect, how to approve the upgrade, how to install the upgrade, who should do it, how to document the upgrade and how to verify the operation.
NOTE. These requirements should be specified in context with the change control referred to in the sections C.2.5 Design changes and C.6.2 New versions.

	Special requirements

Requirements the laboratory is committed to, security, confi​dentiality, change con​trol and back-up of records, protection of code and data, precautions, risks in case of errors in the computer sys​tem, etc.
	Special requirements to be taken into consideration. If the laboratory is committed to some standard or regulation, (as e.g. accreditation to ISO/IEC 17025 or ISO 15189), that standard or regulation should be noted and, if special security, protection, confidentiality measures, or risks awareness has to be observed, they should be described in this field as well.
Any computer system obligation not specified elsewhere that may in​fluence the design, implementation, testing or validation is considered a special requirement.

See also the field Errors and alarms at the end of this table.

	Documentation

Description of the modes of operation and other rele​vant information about the com​puter system.
	Even if it may seem obvious, it is usually good practice to specify what documentation is required to provide all necessary information about the computer system.

	User manual

User instructions on how to use the computer system.
	A computer system should always be supplied with sufficient user manuals and other support information. Sometimes it may be required that user manuals are supplied in particular languages.

	On-line help

On-line Help provided by Windows programs.
	If On-line Help is not a natural part of the computer system, it should be specially required.

	Validation report

Additional documentation stating that the computer system has been validated to the extent re​quired for its application.
	This field may specify that a validation report is required and/or de​scribe what additional documentation is available to prove that the computer system and all its parts have been validated as required for its application.

	Service and mainte​nance

Documentation of service and sup​port concerning maintenance, fu​ture updates, problem solutions, requested modifications, etc.
	Description of how to manage servicing and maintenance of the com​puter system.
NOTE 1. Service and maintenance may be handled by an internal or an external IT-department (whatever the name), and special agreements as regard that may be stated in here or in the field below.

NOTE 2. These requirements should be specified in context with the C.6 Performance and maintenance section.

	Special agreements

Agreements between the supplier and the end-user con​cerning the computer system where such agree​ments may influence the computer system develop​ment and use. E.g. special editions, special analysis, extended validation, etc.
	Any agreement signed by the end-user that concerns the development, testing, and maintenance of the computer system should be part of the validation documents.

E.g. a standard computer system supplied with user-defined modifica​tions will always be based on a special agreement and a clear docu​mentation which conveniently can be referred to from here.

	Supplier audit

Formal assessment to verify that the supplier is qualified.
	Whenever possible, a formal assessment (sometimes referred to as “supplier audit” in QA terms) to verify that the supplier is qualified. That should be performed for both complex computer systems and simpler software products, in case of which a signed statement may be sufficient.

	Phase out

Documentation on how (and when) to discontinue the use of the computer system, how to avoid impact on existing systems and data, and how to recover data.
	A well performed validation task contains a sufficient description on how to handle the discontinuation of the computer system and any software component hereof. The simple reason for that is to be pre​pared in advance when (not if) the case arises.
NOTE 1. Phase out considerations are needed even for new not in​stalled computer systems. It can be extremely costly to omit this.

NOTE 2. These requirements should be specified in context with the C.6.3 Phase out section.

	Errors and alarms

How to handle errors and alarms.
	The way to handle errors and alarms may have been specified as part of the Functionality or Special requirements above. However, in some cases this issue is crucial to the use of the computer system or parts hereof and requires hereby special attention.
Errors and alarms may depend on the actual use of the system and may be documented in external documents referred to in here.

(Return to Table of Contents
The system acceptance test specification contains objective criteria on how the computer system should be tested to ensure that the requirements are fulfilled and that the computer system performs as re​quired in the environment in which it will be used. The system acceptance test is performed after the computer system has been properly installed and thus is ready for the final acceptance test and ap​proval for use.

	Topics
	C.1.2 System acceptance test specification

	Objectives

Description of the operating environment(s) in which the computer system will be tested and used.
	A brief description of the operating environments in which the com​puter system is designed to operate. If testing and performance are car​ried out in different environments, the operational differences should be de​scribed. The main properties of the performance OS should be de​scribed as well.

	Scope

Scope of the acceptance test. E.g. installation and version, startup and shutdown, com​mon, selected, and critical requirements, and areas not tested.
	The scope of the system acceptance testing is determined in context with the functional specifications in order to ensure that the testing de​scribed in here will document that the requirements are met.
Issues like installation and version, startup and shutdown, common and critical requirements, and untested areas etc. may be included in this scope.

	Input

Selected inputs the computer system must receive and handle as specified.
	Carefully selected inputs that can be used to verify that the computer system or software component receives and handles its inputs as ex​pected and specified. The inputs should include normal, extreme, out-of -range, and illegal quantities. It is common to use predefined well known test-data, which may be produced for this purpose.

	Output
Selected outputs the com​puter system must produce as specified.
	Carefully selected outputs that can be used to verify that the computer system or software component responds to known inputs as expected and specified. The outputs should show response to normal, extreme, out-of -range, and illegal quantities as well. It is common to use prede​fined well known test-data, which may be produced for this purpose.

	Functionality

Selected functions the com​puter system must perform as specified.
	Carefully selected functions that can be used to verify that the com​puter system or software component operates as expected and speci​fied. The functions should document that normal, extreme, out-of -range, and illegal conditions are handled correctly. It is common to use predefined well known test-data and test-procedures, which may be pro​duced for this purpose.

	Personnel
Description of operations the actual user(s) shall perform in order to make evident that the computer system can be operated correctly as speci​fied and documented.
	A computer system or a software product has not been properly vali​dated until it is proven that the persons which shall operate them can do that as expected and specified, and this field is intended to describe how to do that. E.g. the operator shall demonstrate
· understanding and use of the manual and the on-line help

· understanding of screen pictures and dialogs

· knowledge of basic and acquired system operations

· knowledge of what to do and not to do in critical situations

· how to handle errors and alarms

	Errors and alarms

How to handle errors and alarms.
	Errors and alarms are a crucial part of the requirements specification, and this field is meant to describe how to test that the errors and alarms are handled properly. As for Inputs, Outputs, and Functionality, special predefined and well-known test-data can be used to verify that errors and alarms are registered and handled as expected and specified.

(Return to Table of Contents
C.2 Design and implementation process

The design and implementation process is relevant when developing new systems and when handling changes subjected to existing systems. The output from this life cycle phase is a program approved and accepted for the subsequent inspection and testing phase. Anomalies found and circumvented in the design and implementation process should be described in section C.4 Precautions.

	Topics
	C.2.1 Design and development planning

	Objectives

Expected design outcome, time schedule, milestones, special considerations, etc.
	A brief description of the expected output of the design. Also design goals, timetables, milestones, and special design considerations may be included. If tenders have been invited for design, the related documents could be referred to in here.

	Design plan

Description of the computer system e.g. in form of flow-charts, diagrams, notes, etc.
	A proper design needs a plan to start with. An easy way to present a design plan may be flowcharts and diagrams. Such drawings may be part of the requirements specification, but may also be a result of solving the problem in question.

	Development plan

Development tools, man​power, and methods.
	Proper development requires a development plan before the start. Such a plan may contain elements like:
· What development tools to use

· Who is involved in the development

· Which methods shall be used

	Review and acceptance

How to review, test, and ap​prove the design plan.
	The plans above should be reviewed and accepted before the imple​mentation begins. This field is intended for description of whom, how and when review takes place, and which criteria to use to approve the design.
The review and acceptance is especially important to control develop​ment done by external suppliers, and the planning documents may be very useful in the subsequent inspection and testing phases.

(Return to Table of Contents
The design input phase establishes that the requirements can be im​plemented. Incomplete, ambiguous or conflicting requirements are resolved with those responsible for imposing these requirements. The input design may be presented as a detailed specifi​cation, e.g. by means of flow charts, diagrams, module definitions etc.

	Topics
	C.2.2 Design input

	Requirements analysis

Examinations done to ensure that the requirements can be implemented.
	This field is used to describe how to ensure that the planned design can be implemented, both technically and economically.

NOTE. The outcome of these examinations may lead to changes in the original requirements specification, and these results need, therefore, to be documented and approved.

	System modules

Description of the system modules to be implemented.
	At this stage, an overview over the computer system modules should be described, either as a result of the previous planning or as the solu​tion proposed by a supplier.

	Review and acceptance

How to review, test, and ap​prove the Design Input sec​tion.
	The design input should also be reviewed and accepted. This field is intended for description of how and when review takes place, who should do it, and which criteria to use to approve the input to the im​plementation.

NOTE. The implementation (in here called the Design Output) uses the approved design input as requirements for the implementation.

(Return to Table of Contents
The design output must meet the design input requirements, contain or make references to acceptance criteria, and identify those char​acteristics of the design that are crucial to the safe and proper func​tioning of the product. The design output should be validated prior to releasing the computer system for final inspection and testing.

	Topics
	C.2.3 Design output

	Implementation (coding and compilation)

Development tools used to implement the system, notes on anomalies, plan for mod​ule and integration test, etc.
	The design output is synonymous with the implemented software solu​tion, which again is the computer system or the software product in question.
This field is intended to hold all information relevant for the imple​mentation itself, such as
· Compilation tools (e.g. C++, Case, VBA, Java etc.)

· how to record output such as code and documents

· how to test individual modules

· how to perform the integration testing

· notes, programmers, testers, and developers

NOTE 1. The output from this section will normally be external to this validation report and will thus be referred to from in here.

NOTE 2. The output from this section should be subject to document control.

	Version identification

How to identify versions - on screen, printouts, etc. Exam​ple “Version 1.0.0”.
	As subject to document control, all documents, codes, screen pages, prints, and everything that can be traced back to a specific version of the design output (implementation) must be specified with version identification.
The format of the version specification should be stated in this field.

	Good programming practice

Efforts made to meet the recommendations for good programming practice...
	Source code is...

(Modularized
(Encapsulated
(Functionally divided
(Strictly compiled
(Fail-safe (handling errors)
	Source code contains...

(Revision notes
(Comments
(Meaningful names
(Readable source code
(Printable source code

	
	See also section H.2.6 Tips on good programming practice

	Windows programming

If implementing Windows applications...
	(Interface implemented using standard Windows elements
(Interface implemented using self-developed Windows elements
(Application manages single/multiple running instances
Comments: See also section H.2.7 Tips on Windows programming

	Dynamic testing

Step-by-step testing made dynamically during the im​plementation...
	(All statements have been executed at least once
(All functions have been executed at least once
(All case segments have been executed at least once
(All loops have been executed to their limits
(Some parts were not subject to dynamic test
Comments: See also section H.2.8 Dynamic testing

	Utilities for validation and testing

Utilities implemented to as​sist in validation and testing and specification of the test environment.
	It is common practice that computer systems and software products have built-in software utilities used to assist in testing, trouble shoot​ing, configuration set up, shortcut, customizing and validation.

Such programming utilities should be properly listed; otherwise they may be mistaken for dead code, which should be avoided (see below).

	Inactive code

Inactive (dead) code left for special purposes.
	It is good validation practice to avoid dead unused and inactive code in software programs. However, if such dead code is left in the system it should be documented here.

	Documentation

Documentation provided as output from the Design Out​put section.
	Readable source code printouts are valid documentation. Programs should be properly documented so that all necessary information be​comes available for the user to operate the software product correctly.
The preparation of a user manual may be specified in the requirements, but additional user manuals and/or On-line Help facilities may be pro​duced if required.
This field may be used to mention, list, and refer to all external docu​ments provided as output from the design output (implementation) phase.

	Review and acceptance

How to review, test, and ap​prove the Design Output section.
	The design output should be reviewed and accepted. This field is in​tended for description of whom, how and when review takes place, and which criteria to use to approve the output from the implementation.

NOTE. The output from the implementation is the primary issue for the subsequent life cycle phase C.3 Inspection and testing

(Return to Table of Contents
At appropriate stages of design, formal documented reviews and/or verifications of the design should take place before proceeding with the next step of the de​velopment process. The main purpose of such actions is to ensure that the design process proceeds as planned.

	Topics
	C.2.4 Design verification

	Review

Review current development stage according to the de​sign and development plan.
	No special help for this field.

	Change of plans

Steps taken to adjust the de​velopment process.
	No special help for this field.

(Return to Table of Contents
The Design Change section serves as an entry for all changes applied to the computer system, also computer systems being subjected to retrospective validation. Minor corrections, updates, and en​hancements that do not impact other modules of the system are regarded as changes that do not re​quire an entire revalidation. Major changes are reviewed in order to decide the degree of necessary revalida​tion or updating of the requirements and system acceptance test speci​fication.

	Topics
	C.2.5 Design changes
	Date / Initials

	Justification

Documentation and justifi​cation of the change.
	1. Description:

2. Description:

3. ...
	

	Evaluation

Evaluation of the conse​quences of the change.
	1. Description:

2. Description:

3. ...
	

	Review and approving

Review and approving the change.
	1. Description:

2. Description:

3. ...
	

	Implementing

Implementing and verifying the change.
	1. Action:

2. Action:

3. ...
	

	Validation

The degree of revalidation or updating of requirements.
	1. Action:

2. Action:

3. ...
	

(Return to Table of Contents
C.3 Inspection and testing

The inspection and testing of the computer system is planned and documented in a test plan. The ex​tent of the testing is in compli​ance with the requirements, the system acceptance test specification, the approach, complexity, risks, and the in​tended and expected use of the computer system.

	Topics
	C.3.1 Inspection plan and performance
	Date / Initials

	Design output

Results from the Design Output section inspected...
	(Program coding structure and source code
(Evidence of good programming practice
(Design verification and documented reviews
(Change-control reviews and reports
Comments:
	

	Documentation

Documentation inspected...
	(System documentation, flow charts, etc.
(Test results
(User manuals, On-line help, Notes, etc.
(Contents of user manuals approved
Comments:
	

	Software development environment

Environment elements in​spected...
	(Data integrity
(File storage
(Access rights
(Code protection
(Installation kit, replication and distribution
Comments:
	

	Result of inspection

Approval of inspection.
	(Inspection approved
Comments:

This option should be checked when the inspec​tion has been completed successfully.
	

(Return to Table of Contents
The test plan is created during the development or reverse engineering phase and should identify all elements that are about to be tested. The test plan should explicitly describe what to test, what to ex​pect, and how to do the testing. Subse​quently it should be confirmed what was done, what was the re​sult and if the result was approved.

	Topics
	C.3.2 Test plan and performance
	Date / Initials

	Test objectives

Description of the test in terms of what, why, and how.
	No special help for this field.
See also section H.3 Inspection and testing
	

	Relevancy of tests

Relative to objectives and required operational use.
	No special help for this field.
See also section H.3 Inspection and testing
	

	Scope of tests

In terms of coverage, vol​umes, and system complex​ity.
	No special help for this field.
See also section H.3 Inspection and testing
	

	Levels of tests

Module test, integration test, and system acceptance test.
	No special help for this field.
See also section H.3 Inspection and testing
	

	Types of tests

E.g. input, functionality, boundaries, performance, and us​ability.
	No special help for this field.
See also section H.3 Inspection and testing
	

	Sequence of tests

Test cases, test procedures, test data and expected re​sults.
	No special help for this field.
See also section H.3 Inspection and testing
	

	Configuration tests

Platform, network, and inte​gration with other systems.
	No special help for this field.
See also section H.3 Inspection and testing
	

	Calculation tests

To confirm that known in​puts lead to specified out​puts.
	No special help for this field.
See also section H.3 Inspection and testing
	

	Regression tests

To ensure that changes do not cause new errors.
	No special help for this field.
See also section H.3 Inspection and testing
	

	Traceability tests

To ensure that critical events during use are recorded and traceable as required.
	No special help for this field.
See also section H.3 Inspection and testing
	

	Special concerns

Testability, analysis, stress, reproducibility, and safety.
	No special help for this field.
See also section H.3 Inspection and testing
	

	Acceptance criteria

When the testing is com​pleted and accepted.
	No special help for this field.
See also section H.3 Inspection and testing
	

	Action if errors

What to do if errors are ob​served.
	No special help for this field.
See also section H.3 Inspection and testing
	

	Follow-up of tests

How to follow-up the testing.
	No special help for this field.
See also section H.3 Inspection and testing
	

	Result of testing

Approval of performed tests.
	(Testing approved
Comments:

This option should be checked when the testing has been completed successfully.
	

(Return to Table of Contents
C.4 Precautions

When operating in a third-party software environment, such as Microsoft(Windows and Office, some undesirable, inappropriate, or anomalous operating conditions may exist. A dis​crepancy between the descriptions of the way an instrument should operate and the way it actually does may be regarded as an anomaly as well. Minor errors in a computer system may sometimes be acceptable if they are documented and/or properly cir​cumvented.

	Topics
	C.4.1 Registered anomalies

	Operating system

Anomalous operating condi​tions in e.g. Windows.
	No special help for this field.

	Spreadsheet

Anomalous operating condi​tions in e.g. Excel.
	No special help for this field.

	Instruments

Anomalous operating condi​tions in the instruments used.
	No special help for this field.

	General precautions

Anomalous operating condi​tions associated with the computer system itself.
	No special help for this field.

(Return to Table of Contents
The steps taken to workaround anomalous, inappropriate or undesired operating conditions are verified and tested.

	Topics
	C.4.2 Precautionary steps taken
	Date / Initials

	Operative system

Precautionary steps taken in e.g. Windows settings.
	No special help for this field.

	

	Spreadsheet

Precautionary steps taken to workaround problems using e.g. Excel.
	No special help for this field.

	

	Instruments

Precautionary steps taken to workaround problems with the instruments used.
	No special help for this field.

	

	General precautions

Precautionary steps taken to workaround problems with the computer system itself.
	No special help for this field.

	

(Return to Table of Contents
C.5 Installation and system acceptance test

The validation of the installation process ensures that all system ele​ments are properly installed in the host system and that the user obtains a safe and complete installation, especially when installing soft​ware products.
	Topics
	C.5.1 Installation summary

	Installation method

Automatic or manual instal​lation...
	(Automatic - installation kit located on the installation media
(Manual - Copy & Paste from the installation media
Comments:

	Installation media

Media containing the in​stallation files...
	(Diskette(s)
(CD-ROM
(Source disk folder (PC or network)
(Download from the Internet
Comments:

	Input files

List of (relevant) files on the installation media.
	No special help for this field.

	Installed files

List of (relevant) installed files, e.g. EXE- and DLL-files, spreadsheet Add-ins and Templates, On-line Help, etc.
	No special help for this field.

	Supplementary files

Readme files, License agreements, examples, etc.
	No special help for this field.

	Installed components

Description of installed components that require validation.
	No special help for this field.

	Installation qualification

How to ensure and document that each component is in​stalled correctly.
	The installation process itself should be validated. In this field it may described how to ensure that each component is installed correctly and how to ensure that the installation causes no impact on other parts of the computer system.

(Return to Table of Contents
The system is tested after the installation to the extent depending on the use of the system and the ac​tual requirements, e.g. an adequate test following the validation test plan. Sometimes it is recommend​able to carry out the installation testing in a copy of the true environment in order to protect original data from possible fatal errors due to using a new program.

	Topics
	C.5.2 Installation procedure
	Date / Initials

	Authorization

Approval of installation in actual environment.
	Person responsible:

This field should indicate who is responsible for the system installation testing.

Since the testing has been specified elsewhere, it should be sufficient just to confirm and sign if the tests have been completed successfully or, if not, to specify what happened in the comments area.
	

	Installation test

The following installations have been performed and approved...
	(Tested and approved in a test environment
(Tested and approved in actual environment
(Completely tested according to test plan
(Partly tested (known extent of update)
Comments:
	

(Return to Table of Contents
The system acceptance test is carried out in accordance with the system acceptance test specifications after installation. The computer system may subsequently be approved for use.

	Topics
	C.5.3 System acceptance test
	Date / Initials

	Test environment

The environment in which the system acceptance test has been performed...
	(The actual operating environment (site test)
(A true copy of the actual environment
(External environment (supplier factory test)
Comments:
	

	Test performance

Areas, which have been tested and approved...
	(Installation and version
(Startup and shutdown
(Selected or critical requirements
(Selected inputs
(Selected outputs
(Selected functionality
(Performance vs. user instructions
Comments:
	

	User level test

Test if users of various skills can use the computer sys​tem...
	(Tested at operator user level
(Tested at super-user level
(Tested at system administrator level
(Tested at overall system manager level
(Education and training documented
(System user manuals available
Comments:
	

	Result of testing

Approval for use.
	(Testing approved
Comments:

This option should be checked when the system acceptance testing has been completed success​fully.
	

(Return to Table of Contents
C.6 Performance, servicing, maintenance, and phase out

In this phase, the computer system is in use and subject to the requirements for service, maintenance, performance and support. This phase is where all activities reside during performance and where deci​sions about changes, upgrades, revalidation, and phase out are made.

	Topics
	C.6.1 Performance and maintenance
	Date / Initials

	Problem / solution

Detection of system prob​lems causing operating trou​bles. A first step could be to suggest or set up a well-documented temporary solu​tion or workaround.
	1. Problem / solution:

2. Problem / solution:

3. ...
	

	Functional maintenance
E.g. if the computer system is committed to in​ternational standards, and these stan​dards are changed, the com​puter system, or the way it is used, should be updated ac​cordingly.
	1. Function / action:

2. Function / action:

3. ...
	

	Functional expansion and performance im​provement
List of suggestions and re​quests, which can improve the performance of the com​puter system.
	Together with the fields above, the information stated in this section serves as documentation of the software maintenance, which is required to keep the system up-to-date.

Validation requires that the computer system is adequate for its specified application and that im​plies that planned and desired updates are taken into consideration.

This list should therefore be kept updated.

	

(Return to Table of Contents
When a new version of the computer system is taken into use, the effect on the exist​ing system is care​fully analyzed and the degree of revalidation decided. Special attention is paid to the effect on old spreadsheets when upgrading the spreadsheet package.

	Topics
	C.6.2 New versions
	Date / Initials

	Description

Description of the new ver​sion to the extent needed to decide whether or not to up​grade.
	1. Version:

2. Version:

3. ...
	

	Action

Action to be taken if upgrade is decided. See also the Design Changes section.
	1. Action:

2. Action:

3. ...
	

(Return to Table of Contents
It is taken into consideration how (and when) to discontinue the use of the computer system. The po​tential impact on existing systems and data are examined prior to with​drawal.

	Topics
	C.6.3 Phase out
	Date / Initials

	How and when

To discontinue the use of the computer system.
	Phase out of a computer system or a software product should always be taken as a serious mat​ter, even if the software in question is new.

The producer or supplier should always be asked to provide documentation and means to ensure the data can be transferred safely to another system.

NOTE. A signed contract is considered as valid documentation.
	

	Consequences

Assumed impact on existing systems and data and how to avoid or reduce the harm.
	Analyzing the possible impact on existing systems will help the laboratory to avoid problems when the system is taken out of use
	

(Return to Table of Contents
D. Conclusion

By the subsequent signatures it becomes evident that all validation activities are documented and ap​proved.

	D.1 Final approval for use

	Laboratory Identification:
	This field is used to identify the laboratory that has the final respon​sibility for the approval of the validation report.

	Responsible for validation:
	This field is used to identify the person(s) at the laboratory that have the responsibility for the validation report.

	Remarks:

	Date:
	Signature:

(Return to Table of Contents
	D.2 Conclusion (Document protection)

	[image: image7.wmf]The entire document is locked for editing (to avoid inadvertent change of contents)

The entire document is locked for editing (to avoid inadvertent change of contents)

	Comments:

	Date:
	Signature:

(Return to Table of Contents
E. References and annexes

All external documents (if any) must be dated and signed.

	
	

	
	

	
	

(Return to Table of Contents
F. Description
This computer system validation method, based on the “Nordtest Method of Software Valida​tion” NT Tech Report 535, is basically developed to assist accredited laboratories in validation of computer systems for cali​bration and testing. The actual report is provided via a Word XP (2002) template “System Validation Report” which is or​ganized in accordance with the life cycle model used in the valida​tion method. There are two main tasks associated with each life cycle phase:

· Preliminary work. To specify/summarize the requirements (forward/reverse engineering for prospec​tive/retrospective validation), to manage the design and development process, make the vali​dation test plan, document precautions (if any), pre​pare the installation procedure, and to plan the ser​vice and maintenance phase.

· Peer review and test. To review all documents and papers concerning the validation process and conduct and approve the planned tests and installation procedures.

The report template contains 5 sections:

A. Objectives and scope of application. Tables to describe the computer system, to list the involved persons, and to specify the type of system in order to determine the extent of the validation.

B. System life cycle overview. Tables to specify date and signature for the tasks of preliminary work and the peer reviews assigned to each life cycle phase as described above.

C. System life cycle activities. Tables to specify information that is relevant for the valida​tion. It is the intention that having all topics outlined, it should be easier to write the report.

D. Conclusion. Table for the persons responsible to conclude and sign the validation report.

E. References and annexes. Table of references and annexes.

It is recommended not to delete irrelevant topics but mark them as excluded from the validation by a “not relevant” or “not applicable” (n/a) note – preferably with a reason – so it is evident that they are not forgotten but are deliberately skipped.

It is the intention that the validation report shall be a “dynamic” document, which is used to keep track of all changes and all additional information that currently may become relevant for the computer system and its validation. However, such current updating can make the document more difficult to read but remember it is the content, not the format, which is important.
F.1 About macros in Word

Word XP documents contain an ActiveX component and a number of other macros to manage the ABC toolbar and its buttons. The checkbox function locks (and unlocks) the entire document and any other checkbox in the document and may be used protect the final report against inadvertent changes.
Macros in Word documents have to be enabled to work. It is generally recommended to select Word's medium security level and then subsequently approve that macros are enabled when a document, which is known to, or expected to, contain macros is opened.

The validation reports were previously based on real Word templates (known as .dot files). How​ever, if such a template contains macros, all new documents based on that template will require that Word has access to the template file itself to find and execute the macros. If you want to copy such a docu​ment to another PC and be able to edit the copy and use the macros, you will have to install the tem​plate file (the .dot file) on the other PC as well. To avoid this, the System Validation Report tem​plate is in fact an “empty” report (a normal .doc file), which can always execute its macros.

G. Method of software validation

This method is basically developed to assist accredited laboratories in validation of software for cali​bration and testing. The main requirements to the laboratories are stated in the Standard ISO/IEC 17025 [5]. The Danish Accreditation Body has prepared a DANAK guideline RL 10 [1] which inter​prets the requirements in ISO/IEC 17025 with respect to electronic data processing in the accredited laboratories. That guideline and this method are closely related.

If the laboratories comply with the requirements in ISO/IEC 17025, they will also to some extent meet the require​ments of ISO 9000:2000. The goal of this method was also to cover the situation where an accredited labo​ratory wants to develop and sell validated computer software on commercial basis. Therefore the Guideline ISO 9000-3 [2], which outlines requirements to be met for such suppliers, is taken into ac​count.

Furthermore, the most rigorous validation requirements come from the medical and pharmaceutical industry. In order to let this method benefit from the ideas and requirements used in this area, the guidance from U.S. Food and Drag Administration (FDA) “General principles of software validation” [3] and the GAMP Guide [4] are intensively used as inspiration.

This method is not a guideline. It is a tool to be used for systematic and straightforward validation of various types of software. The laboratories may simply choose which elements they want to validate and which they do not. It is their option and their responsibility.

G.1 Definition of terms

In order to assure consistency, conventional terms used in this document will apply to the following definitions:

· Computer system. A group of hardware components and associated software designed and assem​bled to perform a specific function or group of functions [4].

· Software. A collection of programs, routines, and subroutines that controls the operation of a com​puter or a computerized system [4].

· Software product. A set of computer programs, procedures, and associated documentation and data [2].

· Software item. Any identifiable part of a software product [2].

· Standard or configurable software packages. Standard or configurable software packages are com​mercial products, which typically are used to produce customized applications (e.g. spread​sheets and executable programs). Even if the software packages themselves do not require valida​tion, new versions should always be treated with caution and be approved before use. The applica​tions they make should always be validated [4].

· Custom built or bespoke systems. Software products categorized as custom built or bespoke sys​tems are applications that should be validated in accordance with a validation plan based on a full life cycle model [4].

· Testing. The process of exercising or evaluating a system or system component by manual or auto​mated means to verify that it satisfies requirements or to identify differences between expected and actual results [4].

· Verification. Confirming that the output from a development phase meets the input requirements for that phase [3].

· Validation. Establishing by objective evidence that all software requirements have been imple​mented correctly and completely and are traceable to system requirements [3].

· Revalidation. Repetition of the validation process or a specific portion of it [4].

· Retrospective validation. Establishing documented evidence that a system does what it purports to do, based on analysis of historical information [4].
· Reverse engineering. Preparing retrospective valida​tion tasks to be conducted on existing software products (in contrast to software products under development).

· Life cycle model. A framework containing the processes, activi​ties, and tasks involved in the develop​ment and maintenance of a software product, spanning the life of the software from the defi​nition of its requirements to the termination of its use, i.e. from concept to retirement [2].

· Design process. Software life cycle process that comprises the ac​tivities of input requirements analy​sis, architectural design, and de​tailed function design. The design process is that which trans​forms the requirements into a software executable.

· Development process. Software life cycle process that comprises the activities of system require​ments analysis, design, coding, integration, testing, installation, and support for acceptance. The development process is that which transforms the requirements into a software product [2].

· System acceptance testing. Documented validation that the software performs as defined in the re​quirements throughout anticipated operating ranges in the environment in which it will be used.

· Dynamic testing. Testing performed in the development process to ensure that all statements, func​tions, cases, and loops have been executed at least once.

· Regression testing. Testing to determine that changes made to cor​rect defects have not introduced additional defects. [2]

· Replication. Copying a software product from one medium to an​other. [2]

G.2 Scope

Persons who use, develop, and validate software - especially software products used for calibration and testing in accredited laboratories - may use this method. Most of such software products require valida​tion and are commonly categorized as custom built or bespoke systems. They are pro​grams and spreadsheets that the laboratory itself develops or purchases.

This method is based on a common life cycle model and takes into consideration most aspects of nor​mal (prospective) and retrospective validation. This method may be used for validation of:

· Purchased software products that are not standard or configurable software packages

· Self-developed or purchased software products where the source code is available and known

· Software being developed in control of the laboratory

G.2.1 Purchased software products

Purchased software products are generally subject to retrospective validation. Depending on the avail​able information about the products, a more or less formal validation should be conducted (in​cluding at least specification of requirements and testing). In calibration and testing, as well as in devel​op​ing, sup​plying, in​stalling and maintaining software products, purchased products may include:

· Commercial off-the-shelf software

· Subcontracted development

· Tools to assist in the development of programs

Purchased software products are validated to the extent required by their intended use. Large software packages may thus be just partly validated provided that the reason for doing so can be docu​mented.

G.2.2 Self-developed software products

Self-developed software products (including spreadsheets) developed by the laboratory, by means of some com​mercial standard or configurable software package, require full validation. The software packages themselves do not require valida​tion but new versions should always be treated with caution and should be tested and approved before use. A word of advice: never use beta-releases.

It should be especially noted that spreadsheets are programs, and that as such, require validation. Spreadsheets may be validated as other programs but special attention should be paid to the fact that spreadsheets have a wide-open user interface and are, therefore, very vulnerable to uninten​tional changes.

G.3 Development, verification, and validation

While new software is being developed, it may sometimes be necessary to test parts of the software. These tests have to be recorded in order to document that the development proceeded as planned.

Software products require validation. For a software product regarded as an encapsulated functional unit, the purpose of validation is to establish evidence that its requirements are met and that it per​forms adequately in its actual or expected surroundings.

Computer systems require validation in the environment in which they are used. The final validation may combine the individual validation tasks conducted on all the software products forming the com​plete computer system.

This method is designed to benefit these requirements.

H. Software life cycle model

This method recommends the use of a general life cycle model to organize the validation process. In this way, the software product can be subjected to validation in all phases of its lifetime, from the ini​tial specification of requirements to phase out. This general life cycle model includes the following phases:

H.1 Requirements and system acceptance test specification

H.2 Design and implementation process

H.3 Inspection and testing

H.4 Precautions

H.5 Installation and system acceptance test

H.6 Performance, servicing, maintenance, and phase out

The life cycle model may thus be regarded as a validation schedule that con​tains the information nec​essary to make a proper assessment. It outlines the tasks to be performed, methods to be used, cri​teria for acceptance, input and output required for each task, required documentation, and the persons which are responsible for the validation.

H.1 Requirements and system acceptance test specification

The requirements describe and specify the software product and are basis for the development and validation process. A set of requirements can always be specified. In case of retrospective validation (where the development phase is irrelevant), it can at least be specified what the software is purported to do based on actual and historical facts. If the requirements specification is made in more versions, each version should be clearly identified.

When specifying requirements for spreadsheets, it should be noted that the user interface is wide-open for erroneous input and hereby provides a great risk for inadvertent changes. Thus, the spreadsheet re​quirements should specify input protection and/or some detailed documentation on how to use the spreadsheet program. Furthermore, it should be required that new spreadsheets should be based on templates and never on old modified spreadsheets.

H.1.1 Requirements specification

The requirements should encompass everything concerning the use of the software:

· Version of requirements. Information that identifies the actual version of, and changes applied, to the requirements specification.

· Input. All inputs that the software product will receive. Includes specification of ranges, limits, de​faults, response to illegal in​puts, etc.

· Output. All outputs that the software product will produce. In​cludes data formats, screen presenta​tions, storage medium, print​outs, generation of documents, etc.

· Functionality. All functions that the software product will provide. Includes performance require​ments such as data throughput, reliability, timing, user interface features, etc.

· Traceability. Measures taken to ensure that critical user events are recorded and traceable.

· Hardware control. All device interfaces and equipments to be supported.

· Limitations. All acceptable and stated limitations in the software product.

· Safety. All precautions taken to prevent overflow and malfunction due to incorrect input or use.

· Default settings. All settings automatically applied after power-up, such as default input values, de​fault instrument or program control settings, and options selected by default. Includes information on how to manage and maintain the default settings.

· Version control. How to identify different versions of the software product and to distinguish out​put from the individ​ual versions.

· Dedicated platform. The operating hardware and software environment in which to use the soft​ware product, e.g. laboratory or office computer, the actual operating system, network, third-party ex​ecutables such as Microsoft(Excel and Word, etc.

· Installation. Installation requirements, e.g. how to install and uninstall the software product.

· How to upgrade. How to upgrade to new versions of platforms, support tools, etc.

· Special requirements. Requirements stated by the International Standards to which the laboratory is committed. Security requirements, traceability, change control and back-up of records, protection of code and data, confi​dentiality, precautions, risks in case of errors in the software product, etc.

The requirements also specify which software items must be available for correct and unambiguous use of the software product.

· Documentation. Description of the modes of operation and other rele​vant information about the soft​ware product.

· User manual. How to use the software product.

· On-line help. On-line Help provided by Windows programs.

· Validation report. Additional documentation stating that the software product has been validated to the extent re​quired for its application.

· Service and maintenance. Documentation of service and sup​port concerning maintenance, fu​ture updates, problem solutions, requested modifications, etc.

· Special agreements. Agreements between the supplier and the end-user con​cerning the soft​ware product where such agreements may influence the software product development and use, e.g. spe​cial editions, special analysis, or extended validation, etc.

· Phase out. Documentation on how (and when) to discontinue the use of the software product and how to avoid impact on existing systems and data.

· Errors and alarms. How to handle errors and alarms.

H.1.2 System acceptance test specification

The system acceptance test specification contains objective criteria on how the software product should be tested to ensure that the requirements are fulfilled and that the software product performs as re​quired in the environment in which it will be used. The system acceptance test is performed after the software product has been properly installed and thus is ready for the final acceptance test and ap​proval for use.

H.2 Design and implementation process

The design and implementation process is relevant when developing new software and when handling changes subjected to existing software. The output from this life cycle phase is a program approved and accepted for the subsequent inspection and testing phase.

The design phase may be more or less comprehensive depending on whether it is a simple spreadsheet or a large complex program, which is about to be developed, if there are many or few persons in​volved or if there are special requirements for robustness etc. The design and implementation process may be divided into a number of sub-phases, each of which focuses on specific development activi​ties and tasks.

Anomalies found and circumvented in the ‘Design and implementation process’ should be described in phase 4, Precautions.

H.2.1 Design and development planning

In compliance with the complexity and schedule of the software project, a more or less detailed devel​opment plan is prepared, reviewed and approved. It is planned which part of the program should be reviewed and which criteria to use for acceptance testing.

Before coding and compiling, it should be decided, which software development tools (e.g. code gen​erators, interpreters, com​pilers, linkers and debuggers) to use. These decisions may be evident (part of the laboratory QA-system) or may be made by the persons who are in charge of the development pro​ject. If the develop​ment tools themselves can be regarded as common standard or configurable soft​ware pack​ages, they are not sub​ject to explicit vali​dation. However, it should always be judged whether or not the tools are safe to use, e.g. if it is safe to use the same compiler or code generator to produce both the system-code and the test-code, which is used to test the system-code.

H.2.2 Design input

The design input phase establishes that the requirements can be im​plemented. Incomplete, ambiguous, or conflicting requirements are resolved with those responsible for imposing these requirements.

In the design input phase, requirements are translated into a de​scription of the software to be imple​mented. The result of the de​sign input phase is documented and reviewed as needed, which is the case if several persons are working on the project. The input design may then be presented as a detailed specifi​cation, e.g. by means of flow-charts, diagrams, module definitions etc.

Design improvements based on good interface design practice and nor​mal utilization of programming facilities are considered as a natu​ral part of the software solution.

H.2.3 Design output

The output from the design activity includes:

· Architectural design specification
· Detailed design specification
· Source code
· User guides
The design output must meet the design input requirements, contain or make references to acceptance criteria, and identify those char​acteristics of the design that are crucial to the safe and proper func​tioning of the product. The design output should be validated prior to releasing the software product for final inspection and testing.

H.2.4 Implementation (coding and compilation)

The software development tools (assemblers, basic interpreters, and high level compilers) used to pro​duce the software executables are specified in the development plan. From the design output it should be clear how they were actually used and how module and integration tests should be performed.

Support software such as Microsoft(Excel and its build-in Visual Basic for Applications (VBA) macro interpreter, C++ com​pilers, and other software development systems are categorized as standard or configurable software packages and are used as they are, i.e. they are not sub​ject to explicit vali​dation. However, all anomalies and errors that have been worked around to avoid harm to the software solution should be re​ported in the source code documentation.

It is recommended to keep a log of known anomalies and acquired ex​perience that can be used by other pro​grammers.

H.2.5 Version identification

As stated above, it is required that software products are identi​fied by unambiguous version identi​fica​tion. This could for instance be a three-digit version number of the form “Version 1.0.0” where each digit in​forms about the revision level (e.g. new version, major and minor changes).

H.2.6 Tips on good programming practice

This section outlines the meaning of the phrase “good programming practice”. It is the purpose of this requirement to obtain software that is well structured, understandable, readable, printable and in​herit​able (re-usable). If these simple programming rules are violated, the program validation may become very diffi​cult and maybe even impossible.

· Modularization. If a software solution implies different programs that perform identical measure​ment tasks, the identical operations should be collected in common modules. Such modules, static li​braries (.LIB) and dynamic link libraries (.DLL), are easier to maintain and safer to use than in​serted copies of identical source code.

· Encapsulation. Each object or module should be designed to perform a well-defined encapsulated function. Aggregation of non-familiar functions in the same module, or familiar functions spread over different modules, will make the source code unnecessary complex and impenetrable.

· Functional division. Functionality should be broken down into small manageable and testable units. Often used operations and calcula​tions should be isolated so that identical performances are exe​cuted by the same code.

· Strict compilation. If a compiler offers optional error checking levels, the most rigorous level should be used. Aggressive optimiza​tions and syntactical compiler assumptions should be avoided. Function pro​to​types and strict type specification should always be used.

· Revision notes. Programming revisions and changes to released ex​ecutables should always be docu​mented in the source code even if the changes are documented elsewhere.

· Source code comments. Source code should be properly documented. All relatively complex func​tions should have their purpose, operation, input and output parameters described. Irrelevant and temporary notes, experimental code, etc. should be removed from the final edi​tion of the source code.

· Naming conventions. Function and parameter names should ex​press their meaning and use.

· Readable source code. Source code should be readable. Word-wrap in the text makes it difficult to read.

· Printable source code. Source code should be printable since, quite often, it will be the printout of the source code that will be used for validation. Pagination, headings, lines, and visual separation of sections and functions makes the printout easier to read.

· Fail-safe. The program should issue an error message whenever an error is detected and respond accordingly. Debugging options that can be used to catch run-time error conditions should never be used in released executables.

H.2.7 Tips on Windows(programming

Programs developed for the Windows(platform are expected to look and operate like common Win​dows programs known by the user. Windows programs should be intuitively and unambiguously oper​ated by means of ordinary, self-explanatory Windows interface elements. Programs that are operated in some non-Windows conformable manner have, from a validation point of view, a great potential risk of being operated incorrectly.

Windows(allows executables to run in more than one instance, unless the programmer explicitly pre​vents the start of another in​stance when one is already running. The programmer should be aware that multiple instances will have access to the same files and data and that this may cause problems and sometimes even errors.

H.2.8 Dynamic testing

Source code evaluations are often implemented as code inspection and code walkthroughs. However, another aspect of good programming prac​tice is dynamic testing performed during the implementa​tion:

· Statements.
All statements shall be executed at least once

· Functions.
All functions shall be executed at least once

· Cases.

All case segments shall be executed at least once

· Loops.

All loops shall be executed to their boundaries

All parts of the program should be tested step-by-step during the im​plementation process using debug​ger, temporary modification and other means that can be used to avoid potential run-time errors. The pro​grammer should explicitly document if parts of the program have not been subject to dynamic test​ing.

H.2.9 Utilities for validation and testing

Whenever convenient and possible, the program may be equipped with rou​tines or functions that can be used to test or verify critical se​quences and data management.

The requirements for test and evaluation should be kept in mind while the program is being developed. Without rejecting the ultimate test of all corners of the program, a well-organized structure may itself provide an adequate test of the basic issues of validation:

· Data are commonly read from a measuring device, shown graphically, and then stored in a data-file. Facilities that can read-back the stored data for review may be used to test the data-flow. If the re​viewed data form an artificial recognizable pattern, the graphic display itself is tested as well.

· The simplest way of testing calculations is to prove that given input values produce the ex​pected results. It may sometimes be convenient to create special supplementary test programs to as​sist in validation of complex calculations. Such test programs should also be validated.

· The condition, under which a program is operating, is normally con​trolled by a number of more or less predetermined parameters. By making these parameters accessible and retrievable via user in​ter​face facilities, the integrity of the program setup can be veri​fied.

H.2.10 Tips on inactive code

In general, code segments and functions that are not used (dead source code) should be removed from the final software product. However, verified code intended for internal error detection, preven​tive testing, recovery, or future enhancements may remain in the source code provided that is properly docu​mented.

H.2.11 Documentation

Human readable source code printouts are valid documentation. Programs should be properly docu​mented so that all necessary information becomes available for the user to operate the software prod​uct correctly. The preparation of a user manual may be specified in the requirements but addi​tional user manuals and/or On-line Help facilities may be produced if required.
H.2.12 Design verification

At appropriate stages of design, formal documented reviews and/or verification of the design should take place before proceeding with the next step of the de​velopment process. The main purpose of such actions is to ensure that the design process proceeds as planned.

H.2.13 Design changes

This sub-phase serves as an entry for all changes applied to the software product, also software prod​ucts being subjected to retrospective validation.

Design changes and modifications should be identified, documented, re​viewed, and approved before their implementation. Request for design changes may arise at any time during the software life cycle and may be imposed by detection of errors, inadequacy, revision of basic standards etc. Dealing with changes, the following tasks should be taken in considera​tion:

· Documentation and justification of the change
· Evaluation of the consequences of the change
· Approving the change
· Implementing and verifying the change
Minor corrections, updates, and enhancements that do not impact other modules of the program are regarded as changes that do not require an entire revalidation, since they just lead to a new updated version. Major changes leading to brand-new editions should be reviewed in order to decide the degree of necessary revalidation or even updating of the initial requirements and system acceptance test speci​fication.

If changes are introduced as result of detected anomalies, these anomalies and the workarounds should additionally be described in phase 4, Precautions.

H.3 Inspection and testing

The inspection and testing of the software product is planned and documented in a test plan. The ex​tent of the testing is in compli​ance with the requirements, the system acceptance test specification, the approach, complexity, risks, and the in​tended and expected use of the program.

The following elements are examined by inspection:

· Design output. Coding structure, documentation and compliance with the rules for good program​ming practice. Documentation of the design verification and review results and, if relevant, the de​sign change control report.

· Documentation. The presence of program documentation, user manu​als, test results etc. If required, the contents of the manuals may be approved as well.

· Software development environment. Data integrity, file storage, access rights, and source code protec​tion against inadvertent dam​age to the program. Includes testing of installation kits and repli​cation and distribution of the software product media.

A test plan should explicitly describe what to test, what to expect, and how to do the testing. Subse​quently it should be confirmed what was done, what was the result, and if the result was approved. A test plan should take the following aspects in consideration:

· Test objectives

Description of the test in terms of what, why, and how
· Relevancy of tests
Relative to objectives and required operational usage

· Scope of tests

In terms of coverage, volumes, and system complexity

· Levels of tests

Module test, integration test, and system acceptance test

· Types of tests

Input, functionality, boundary, performance, and usability

· Sequence of tests
Test cases, test procedures, test data and expected results

· Configuration tests
Platform, network, and integration with other systems

· Calculations tests
To confirm that known inputs lead to expected outputs

· Regression tests
To ensure that changes do not cause new errors

· Traceability tests
To ensure that critical events during use are recorded and traceable

· Special concerns
Testability, analysis, stress, repeatability, and safety

· Acceptance criteria
When is the testing completed and accepted
· Action if errors

What to do if errors are observed
· Follow-up of test
How to follow up the testing
· Result of testing
To approve or disapprove the testing

The test plan should be created during the development or reverse engineering phase and identify all elements that are about to be tested. It may be a good idea always to assume that there are errors – and then be happy if the assumption was wrong.

H.4 Precautions

When operating in a third-party software environment, such as Microsoft(Windows and Office, some undesirable, inappropriate, or anomalous operating conditions may exist. In cases where such condi​tions impact the use of the software product in some ir​regular way or cause malfunction, they must be clearly registered, documented, and avoided (if possible). All steps taken to workaround such condi​tions should also be verified and tested.

Precautionary steps may also be taken in case of dis​crepancies between the description of the way an instrument should operate and the way it actually does. In either case it is a good idea to maintain a logbook of registered anomalies for other operators and programmers to use.

Minor errors in a software product may sometimes be acceptable if they are documented and/or prop​erly cir​cumvented.

H.5 Installation and system acceptance test

Purchased software products are normally supplied with an installation kit. Self-made software should, whenever possible, be installable via an installation kit. This will ensure that all software ele​ments are properly installed on the host computer. The installa​tion procedure should guide the user to obtain a safe copy of the software product. The general installation process should be vali​dated.

A program should always be tested after being installed. The extent of the testing depends on the use of the product and the actual testing possibilities. The user could, for example, perform adequate test​ing fol​lowing the guidelines in the validation test plan.

If the software product to be installed only contains minor well-known updates, it may be sufficient to con​duct only a partial test of the areas being updated. However, such partial testing should only be per​formed if the installation process has previously been completely tested and approved.

Sometimes it is recommendable to carry out the installation testing in a copy of the true environment in order to protect original data from possible fatal errors due to using a new program.

When the software product has been properly installed, the system acceptance test should be per​formed as required and planned in order to approve that the software product can be taken into use.

H.6 Performance, servicing, maintenance, and phase out

In this phase the software product is in use and subject to the requirements for service, maintenance performance, and support. This phase is where all activities during performance reside and where de​cisions about changes, revalidation, and phase out are made.

Maintenance activities for software prod​ucts developed and/or used by the laboratory can typically be classified into the follow​ing:

· Problem / solution. This involves detection of software problems causing operational troubles. A first hand step could be to suggest or set up a well-documented temporary solution or workaround.

· Functional maintenance. If the software product is based on in​ternational standards and these stan​dards are changed, the software product, or the way it is used, should be updated accordingly.

· Functional expansion and performance improvement. User suggestions and requests should be re​corded in order to improve the performance of the software product. Such records may provide in​fluence on the development or evaluation of future versions of the software product.

· New versions. When a new version of the software product is taken into use, the effect on the exist​ing system should be carefully analyzed and the degree of revalidation decided. The most common result of these considerations will be reentrance into the design changes sub-phase where further decisions will be made and documented. Special attention should be paid to the effect on old spreadsheets when upgrading the spreadsheet package.

· Phase out. Considerations should be taken on how (and when) to discontinue the use of the soft​ware product. The potential impact on existing systems and data should be examined prior to with​drawal.

Corrective actions due to errors detected in a released software product are addressed under the disci​pline described in the design changes clause.

I. Validation report

All validation activities should be documented and that may seem to be an over​whelming job. How​ever, if the recommendations in this method are followed systematically, the work will become rea​sonable and it will be quite easy to produce a proper validation report.

The method provides a Word XP template “System Validation Report.doc”, which is or​ganized in ac​cordance with the life cycle model stated above. There are two main tasks associated with each life cycle phase:

· Preliminary work. To specify/summarize the requirements (forward/reverse engineering for prospec​tive/retrospective validation), to manage the design and development process, make the validation test plan, document precautions (if any), pre​pare the installation procedure, and to plan the service and maintenance phase. All documents and actions should be dated and signed.

· Peer review and test. To review all documents and papers concerning the validation process and conduct and approve the planned tests and installation procedures. All documents and actions should be dated and signed.

It is recommended always to mark topics that are excluded from the validation as “not relevant” or “not applicable” (n/a) – preferably with an argument – so it is evident that they are not forgotten but are deliberately skipped. Additional rows may optionally be inserted into the tables if required.

It is the intention that the validation report should be a “dynamic” document, which is used to keep track on all changes and all additional information that currently may become relevant for the software product and its validation. Such current updating can, however, make the document more difficult to read but remember it is the content, not the format, which is important.

When validating software used in accredited work, the laboratories must be aware of the requirements specified by their National Accreditation Body and especially how to handle the option to include or exclude validation tasks. Excluded validation tasks should never be removed, but always marked as excluded with an explanatory statement. Thus, the laboratories themselves are responsible for using this method in a way, which can be accepted by their National Accreditation Body.

The software product should be designed to handle critical events (in terms of when, where, whom, and why) applied during use. Such events should be traceable through all life cycle phases and meas​ures taken to ensure the traceability should be stated in the validation report.

It may be good validation practice to sign (by date and initials) the different parts of the report as the vali​dation proceeds, e.g. Requirements specification should be approved and signed before the Design is done, Test specifications should be approved and signed before the tests are carried out, etc. It is also important to identify the persons who are involved in the validation and are authorized to approve and sign the report, e.g.

· Other persons than those who built the software product should do the testing.

· Acceptance testing should be done by the system user/owner rather than by the development team.

· The persons approving documents should not be the same as those who have authored them.

Tips on using the System Validation Report (Word XP template)

A selected row in a table may be set to break across pages if it’s Table Properties | Row | Options check box Allow row to break across pages is checked.

The System Validation Report contains an active checkbox (known as ActiveX compo​nent) used to make on/off decisions faster and easier. This implies that the documents contain macros. The check​box located in section D “Conclusion” contains macrocode, which can lock editing of the entire document and any checkbox and hereby protect the report from being inadvertently changed. How​ever, if the actual report’s ThisDocoment VBA code page is edited, the macrocode may accidentally be de​leted and the lock/unlock facility will no longer work. To reestablish this facility the following macrocode should be inserted in the CheckBox46 click method:

	 Private Sub CheckBox46_Click()

 LockAllCheckBoxes Me, CheckBox46

 End Sub

The lack of confirmation messages when clicking this check box indicates that the macro does not work properly.

J. Method references

	[1]
	DANAK retningslinie, Anvendelse af edb i akkrediterede laboratorier,

RL 10 af 2002.01.01

	[2]
	DS/EN ISO 9000-3, Quality management and quality assur​ance standards - Part 3: Guide​lines for the application of ISO 9001:1994 to the development, supply, installa​tion and maintenance of computer software, Second edition, 1997-12-15

	[3]
	U.S. Food and Drug Administration: General Principles of Software Validation,

Draft Guidance Version 1.1, June 9, 1997 (www.fda.gov/cdrh/ode/swareval.html)

	[4]
	GAMP Guide. Validation of Automated Systems in Pharmaceutical Manufacture. Version: V3.0, March 1998

	[5]
	DS/EN ISO/IEC 17025, General requirements for the competence of testing and cali​bration laboratories, First edition, 2000-04-27

	[6]
	ISO/DIS 15189.2, Medical laboratories – Particular requirements for quality and compe​tence, Draft 2002.

Problem identification and solution

Functional maintenance

Performance improvement

Upgrade to new versions

Phase out / analysis of consequences

Changes

Phase 6

Performance, servicing, maintenance, and phase out

Preparation of installation procedure

Testing the installation procedure

System acceptance test and approval

Phase 5

Installation and system acceptance test

Registration, correction, and workaround of detected and known anomalies in devices, environment, and the software product itself

Phase 4

Precautions

Preparation of test plan

Inspection of documents / source code

Testing and acceptance

Phase 3

Inspection and testing

Design changes / judgment and action

Design verification

Design output / coding and implementation

Design input / analysis of requirements

Design and development planning

Phase 2

Design and implementation process

Input

Output

Functionality / limitations, defaults, security

Platform / system requirements

Special requirements / risk analysis

Preparation of system acceptance test

Service and maintenance / phase out

Phase 1

Requirements and system acceptance test specification

Phase 5

Phase 1

Phase 3

Phase 2

User�&�Supplier

Code Modules

Supplier

User

Software Module Testing

Hardware Acceptance Testing

Software Integration Testing

System Acceptance Testing

Performance Qualification

Software Module�Specification

Hardware Design�Specification

Software Design�Specification

Functional�Specification

User Requirements Specifications

Supplier

User �&�Supplier

User

Primary responsibility for Testing

Primary responsibility

for Specifications

Testing of HW Spec.

Testing of Functional Spec.

Testing of the USR

Review and�Test Modules

4. Edition, May 2005

System Validation Help.doc

_1191083552.unknown

